If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-6x-57=0
a = 3; b = -6; c = -57;
Δ = b2-4ac
Δ = -62-4·3·(-57)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-12\sqrt{5}}{2*3}=\frac{6-12\sqrt{5}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+12\sqrt{5}}{2*3}=\frac{6+12\sqrt{5}}{6} $
| 8x+1=-30 | | 14=-8+x | | 9x+27=9(x+2)=9 | | -3+7=2x+32 | | -22+x=-4 | | m+7=3+m+ | | 11x-4=205 | | 2x+18=2x+17+2 | | 3x=72-3x+3=23+x | | 3+8x=147 | | 4x+18=5x+-6 | | X+2=4(x-1) | | -4+-1x=11 | | (4x-7)(2x-3)-(2x-3)^2=12 | | 4.8x=277.2 | | 2/3s+1/2=31/2 | | 6^x=3.2 | | 5n+34=7n | | 3(x-8)^2-19=0 | | -8n-2n=7-7n | | 5x–10=35 | | 2/3(1/5x+4)-6=0 | | C/35-3x=5 | | x-9=72/(x-8) | | 35=5x–10 | | 1/3k+1/2k=10 | | 9+4x=77 | | 7/2y+2/9=-4/3 | | X/35-3x=5 | | x+19/150=51/100 | | 7x^2+4x-17=47-44x | | 5i(8-3i)=0 |